Information | |
---|---|
has gloss | eng: In geometry, 1k2 polytope is a uniform polytope in n-dimensions (n = k+4) constructed from the En Coxeter group. The family was named by Coxeter as 1k2 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. It can be named by an expoential Schläfli symbol 31,k,2}. |
lexicalization | eng: Uniform 1 k2 polytope |
instance of | e/Polytope |
Media | |
---|---|
media:img | 2 41 polytope petrie.svg |
media:img | CD 3b.png |
media:img | CD dot.png |
media:img | CD downbranch-01.png |
media:img | Complete graph K3.svg |
media:img | Complete graph K4.svg |
media:img | Complete graph K5.svg |
media:img | Complete graph K6.svg |
media:img | Complete graph K7.svg |
media:img | Cross graph 4.svg |
media:img | Demihepteract ortho petrie.svg |
media:img | Demihexeract ortho petrie.svg |
media:img | Demiocteract ortho petrie.svg |
media:img | Demipenteract graph ortho.svg |
media:img | Gosset 1 22 polytope.svg |
media:img | Gosset 1 32 petrie.svg |
media:img | Gosset 1 42 petrie vertices.svg |
media:img | Gosset 1 42 polytope petrie.svg |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint